Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1782, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110621

RESUMO

Amphibole asbestos is related to lung fibrosis and several types of lung tumors. The disease-triggering mechanisms still challenge our diagnostic capabilities and are still far from being fully understood. The literature focuses primarily on the role and formation of asbestos bodies in lung tissues, but there is a distinct lack of studies on amphibole particles that have been internalized by alveolar epithelial cells (AECs). These internalized particles may directly interact with the cell nucleus and the organelles, exerting a synergistic action with asbestos bodies (AB) from a different location. Here we document the near-atomic- to nano-scale transformations induced by, and taking place within, AECs of three distinct amphiboles (anthophyllite, grunerite, "amosite") with different Fe-content and morphologic features. We show that: (i) an Fe-rich layer is formed on the internalized particles, (ii) particle grain boundaries are transformed abiotically by the internal chemical environment of AECs and/or by a biologically induced mineralization mechanism, (iii) the Fe-rich material produced on the particle surface does not contain large amounts of P, in stark contrast to extracellular ABs, and (iv) the iron in the Fe-rich layer is derived from the particle itself. Internalized particles and ABs follow two distinct formation mechanisms reaching different physicochemical end-states.


Assuntos
Células Epiteliais Alveolares/metabolismo , Amiantos Anfibólicos/análise , Amiantos Anfibólicos/metabolismo , Ferro/metabolismo , Pulmão/metabolismo , Nanopartículas/química , Células Epiteliais Alveolares/patologia , Humanos , Pulmão/patologia
2.
Eur J Mineral ; 33(1): 77-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33840909

RESUMO

In this paper, we present the results of a multi-analytical characterization of a glaucophane sample collected in the Piedmont region of northwestern Italy. Investigation methods included optical microscopy, powder X-ray diffraction, Fourier-transform infrared spectroscopy, µ-Raman spectroscopy, Mössbauer spectroscopy, electron probe microanalysis, environmental scanning electron microscopy and energy-dispersive X-ray spectroscopy, and scanning/transmission electron microscopy combined with energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy. In addition to the crystal-chemical characterization of the sample from the mesoscale to the near-atomic scale, we have also conducted an extended study on the morphology and dimensions of the mineral particles. The main finding is that studying the same particle population at different magnifications yields different results for mineral habit, dimensions, and dimensional distributions. As glaucophane may occur as an elongate mineral particle (e.g., asbestiform glaucophane occurrences in California and Nevada), the observed discrepancies therefore need to be considered when assessing potential breathability of such particles, with implications for future regulations on elongate mineral particles. While the sample preparation and particle counting methods are not directly investigated in this work, our findings suggest that different magnifications should be used when characterizing an elongate mineral particle population, irrespective of whether or not it contains asbestiform material. These results further reveal the need for developing improved regulation for elongate mineral particles. We thus propose a simple methodology to merge the datasets collected at different magnifications to provide a more complete description and a better risk evaluation of the studied particle population.

3.
Biomed Opt Express ; 11(1): 1-7, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010495

RESUMO

In this work the terahertz spectra of benzene, toluene, p-xylene and styrene-four volatile organic compounds (VOCs) of interest in environmental pollution studies-have been measured in their liquid phase at room temperature using terahertz time-domain spectroscopy (THz-TDS). Their frequency-dependent refractive index and absorption coefficient have been extracted and analyzed in the spectral range from 0.2 to 2.5 THz. The optical properties of bi-component VOCs mixtures have also been investigated and described in terms of a linear combination of pure VOCs optical components.

4.
Minerals (Basel) ; 8(12)2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31572620

RESUMO

In nature, asbestos is often associated with minerals and other non-asbestiform morphologies thought to be harmless, but not much is known about the potential toxic effects of these phases. Therefore, the characterization of natural assemblages should not be limited to asbestos fibers only. This paper combines a multi-analytical characterization of asbestos from Valmalenco (Italy) with data from dissolution experiments conducted in a simulated interstitial lung fluid (Gamble's solution), and a detailed dimensional study that compares the particle population before and after this interaction. The sample is identified as a tremolitic amphibole, exhibiting a predominance of fiber and prismatic habits at lower magnification, but a bladed habit at higher magnification. The results show that at different magnification, the dimensional and habit distributions are notably different. After the dissolution experiments, the sample showed rounded edges and pyramid-shaped dissolution pits. Chemical analyses suggested that a nearly stoichiometric logarithmic loss of Si and Mg occurred associated with a relatively intense release of Ca in the first 24 h, whereas Fe was probably redeposited on the fiber surfaces. A rearrangement of the more frequent habits and dimensions was recorded after the dissolution experiment, with a peculiar increase of the proportion of elongated mineral particles.

5.
Minerals (Basel) ; 8(9)2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31223499

RESUMO

Vibrational spectroscopies (Fourier Transform Infra Red, FTIR, and Raman) are exceptionally valuable tools for the identification and crystal-chemical study of fibrous minerals, and asbestos amphiboles in particular. Raman spectroscopy has been widely applied in toxicological studies and thus a large corpus of reference data on regulated species is found in the literature. However, FTIR spectroscopy has been mostly used in crystal-chemical studies and very few data are found on asbestos amphiboles. This paper is intended to fill this gap. We report new FTIR data collected on a suite of well-characterized samples of the five regulated amphibole species: anthophyllite, amosite, and crocidolite, provided by the Union for International Cancer Control (UICC) Organization, and tremolite and actinolite, from two well-known occurrences. The data from these reference samples have been augmented by results from additional specimens to clarify some aspects of their spectroscopic features. We show that the FTIR spectra in both the OH-stretching region and in the lattice modes region can be effective for rapid identification of the asbestos type.

6.
Sci Rep ; 7: 40663, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098185

RESUMO

This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several µm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000-2800 cm-1, associated with weaker bands at 1655, 1438 and 1297 cm-1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

7.
Anal Bioanal Chem ; 405(27): 8701-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23846589

RESUMO

Amphiboles caused cohorts of deaths in exposed workers, leading to some of the largest class actions in the industry. Once inhaled, these inorganic fibers are thought to be both chemically and morphologically toxic, and their biopersistence in the lungs over decades lead to progressive pathologies, mesothelioma, and asbestosis. However, this exceptionally long chronicity for human pathologies suggests that chemical toxicity is certainly low, suggesting that morphological parameters could be more relevant in the pathology. Here, we developed a 3D Raman/optical imaging methodology in vitro to characterize both morphological and chemical parameters of cell/fiber interactions. We determined that lung cells could vesiculate amphiboles with length below 5 µm or could embed those not exceeding 15 µm in their fibrous extracellular matrix. Lung cells can thus develop defense strategies for handling the biopersistence of inorganic species, which may thus have major impact for biosafety issues related to nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...